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During this period investigations were carried out in three areas:

1. A simulation study was conducted to investigate very early stages of a nucle-

ation and growth mechanism taking place on diamond surfaces. The ener-

getically most favorable binding sites were calculated along with the binding

energies for up to three carbon adatoms deposited on (100) and (111) planes

of a diamond crystal. Bindings for carbon atoms deposited on the (100) plane

were found to be much stronger than the (111) case. Based on purely energetic

considerations, results obtained in this investigation indicate that the nucle-

ation of carbon atoms should take place more favorably on the (100) plane

than on the (111) plane. Calculated high energy sites for adatoms on the

(100) plane were found to be commensurate with atomic sites within the sur-

face region of the crystal. Computational details along with a short discussion

of the results are presented in Appendix 1.

2. Calculations were carried out in this investigation to analyze energies and

structural properties for (2x1) restructured patterns of the (100) surface

of diamond. Two different model functions developed recently for carbon

were employed in calculations. Three differently reconstructed (2×1) pat-

terns (namely, one dimer model and two different missing row models) for

the exposed surface layer, were taken into consideration. Results obtained in

this investigation support the stability of the dimer model over the unrecon-

structed (1×1) surface. Calculated energies and structural properties for the

dimer model were found to be in agreement with values obtained in other the-

oretical calculations. While one of the potential functions, in accordance with

common belief, predicted the dimer model for the (2 × 1) restructured surface

to be the energetically most stable structure, the other function produced one

of the missing row models as the most favorable form. Appendix 2 includes

details of the calculated results and a discussion on the configurational aspects



of (2 × 1) restructured surfaces.

3. In this part, a crack propagation process for the graphitic basal plane, was

investigated using a molecular dynamics technique. Interactions among car-

bon atoms in the system were calculated using the Tersoff potential energy

function. This function is based on two- and three-body interactions and pro-

duces many macroscopic properties of carbon species correctly. In addition to

individual atomic energies, stress tensors for every atom in the system, were

also calculated. Simulations were performed for a system containing up to

lfi00 carbon atoms and bearing an initial crack. After an equilibration period

the system was loaded uniaxially in a direction perpendicular to the existing

crack with small incremental elongations. Further equilibrations caused the

crack to propagate. During this crack propagation process, atoms located at

the tip of the crack were found to have very high stress values. This result is in

general agreement with other reported calculations and with existing theories

based on macroscopic considerations. However, no dislocation formation in

front of the advancing crack was found. This outcome was attributed to the

short range nature of the potential function employed in this study. Results

are presented in Appendix 3.



Appendix 1. Modeling for Early Stages of Diamond Growth

An atomic level understanding of the very early stages of a nucleation process

is highly desired today in different disciplines related to crystal growth [1-3]. In

this study a simulation calculation was performed to investigate early stages of the

diamond growth mechanism. Binding energies and binding sites were determined for

a number of carbon atoms deposited on (100) and (111) faces of a diamond crystal.

Calculations were carried out for the low temperature limit and throughout this

investigation model potential functions developed recently for carbon species were

used. For comparison, two different model functions, based on two and three-body

interactions, were considered here. The first potential is the Tersoff function. It has

been shown that this function is able to reproduce correctly various bulk properties

of diamond and of the graphitic plane [4]. The second potential used in this study

is the Brenner function [5] which is analytically similar to the Tersoff function, but

parametrized differently. This function also, has been shown to produce acceptable

results for properties of bulk diamond and the basal plane of graphite, as well as

for some properties of small carbon clusters [5,6].

Binding energies per adatoms, Eb, were calculated as:

1
Eb = --[E!m)- E,°]

m

where m is the number of adatoms, E_° denotes the total equilibrated energy of the

system of N particles with an exposed surface, and E_ m) is the total relaxed energy

of the same system with m adatoms deposited on the surface. In this investigation

(100) and (111) index planes of a diamond crystal were taken into consideration.

Surfaces were first generated as abrupt terminations of bulk diamond oriented to

produce the desired surface planes. Systems bearing these faces were then relaxed



using a molecular dynamics procedure. Periodic boundary conditions in two di-

rections (parallel to the exposed surface) were imposed on the system to provide

the continuity of the surfaces. At low temperature these planes remain in (1 × 1)

patterns after the relaxation, but results indicate that for both surface planes the

top interlayer spacings contract considerably, while the second interlayer spacings

exhibit a moderate expansion [7]. Next, carbon atoms were positioned on these

fully relaxed surfaces in various configurations and the whole system (now includ-

ing adatoms) was reequilibrated with the same procedure. Up to three adatoms

were deposited on these surface planes and for each case a number of binding sites

were considered in calculations. Only the energetically most favorable sites are

reported here.

A top view of the (100) surface plane of diamond is depicted in Figure 1 which

shows lattice sites for atoms located in the top four layers. Oalculations using

both Tersoff and Brenner functions produced an upper bridge site (which is the

mid-point between two neighboring upper layer atoms) as the energetically most

favorable site for a single adatom. One of these sites is denoted by the letter A in

Figure 1. These upper bridge sites are located exactly above the atoms in the fouth

layer and they represent exact positions for adatoms forming a complete monolayer

coverage over the (100) plane of diamond. Calculated values for binding energies

are given in Table 1. Equilibrated positions for the adatom in this case, were found

to be about 0.9 and 0.85 ]k above the surface plane for the Tersoff and Brenner

functions, respectively. For two adatoms deposited on the (100) plane the lowest

energy configuration using the Tersoff function was found to be the two neighboring

upper bridge sites denoted by A and D in Figure 1. For the Brenner function, on

the other hand, the two opposing upper bridge sites indicated by A and B are

more favorable. In this case also, after the equilibration, adatoms were found to be

located approximately 0.9 and 0.85 ./k above the surface plane for the Tersoff and

and Brenner functions, respectively. In the case of three adatoms, both functions
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produce sitesA, B and C (seeFigure 1) as the energeticallymost favorable sites.

The adatom at site O in this case is located about 1.75 ]k above the surface plane for

the Tersoff function and about 1.65 _ above the surface for the Brenner potential.

In both cases, the deposited trimer in its fully relaxed configuration forms an obtuse

isosceles triangle with an apex angle of approximately 113 degrees.

In the case of the (111) plane, lattice sites for atoms located in the top four

layers are shown in Figure 2. For an unrelaxed surface, only one type of interplanar

spacing exists for the (100) plane. For the (111) plane, however, atomic layers come

ill pairs and form two different types of interlayer spacings. For all ideal case, the

1 of the second interlayer spacing, _23, which isfirst interlayer spacing, _12 is just

equal to the nearest neighbor distance in the crystal. In (111) plane, a considerable

amount of shrinkage takes place in _12 upon relaxation [7]. Oalculations using both

the Tersoff and Brenner functions, produced the energetically most favorable site

for a single adatom on the (111) surface plane at a top position. The location for

one of these binding sites is denoted by the letter A in Figure 2. The optimized

position of an adatom was calculated as 1.49 and 1.38 _ exactly above the surface

atom for the Tersoff and Brenner functions, respectively. In both cases, calculated

results also indicate that the surface atom at site A moved upward for a few tenths

of an angstrom above the surface plane. For a dimer deposited on a relaxed (111)

surface, calculations based on Tersoff function produced adatom positions near two

neighboring top surface atoms as the energetically most favorable sites (A and B as

shown in Figure 2). In its fully relaxed configuration adatoms of the deposited dimer

are about 1.62 ]k above the top layer. Adatoms in this case are not exactly above

the sites A and B but displaced symmetrically toward each other. Equilibrated

adatoms were found to be aligned parallel to the AB line with an interatomic

distance of 1.48 _. In this case also, surface atoms at sites A and B relaxed upwards

for approximately two tenths of an angstrom. For the Brenner function the relaxed

configuration of a dimer is somewhat different. In this case, adatoms were found

to be aligned above the line connecting the sites A and C. One of the adatoms was



located betweenA and D about 1.67 /_ above the surface plane while the other

adatom was found to be between C and D about 1.92/_ above the surface. In this

fully equilibrated configuration the distance between two adatoms was calculated

as 1.36/_. Surface atoms at sites A and C were found to be relaxed upwards about

0.3 and 0.6/_ above the surface plane, respectively. In this case it is worthwhile to

indicate that the atom at site C was located in the second layer before the relaxation.

In the case of three adatoms, both functions produced comparable results. Adatoms,

in their energetically most stable configuration, are located near the sites A, D and

C (see Figure 2). For the Tersoff function adatom positions were found to be about

1.73, 2.53 and 1.99/_ above the surface plane, while the Brenner function produced

1.71, 2.43 and 1.98/_, respectively. In both cases, adatoms form an obtuse isosceles

triangle with an apex angle of approximately 125 degrees and bond distances were

calculated as 1.46 and 1.31 ]k for the Tersoff and Brenner functions, respectively.

After relaxation, in this case also, surface atoms at sites A and C were found to be

displaced upward approximately 0.2 and 0.5 It for the Tersoff function and about

0.3 and 0.6/_ for the Brenner function.

Calculated results for Eb reported in Table 1 indicate that binding of adatoms

on the (100) surface is energetically more favorable than binding on the (111) plane.

At least up to m = 3, high energy adsorption sites on the (100) face were found

to be commensurate with the atomic sites on the surface of the crystal. However,

high energy positions for adatoms (of dimers and trimers, in particular) deposited

on the (111) plane, are only partially commensurate with the lattice sites. Both

potential functions produced comparable results. Closer analysis of structures of

equilibrated trimers, reveals that at its very early stages a nucleus formed on the

(100) plane is more likely to have a diamond character than one forming on the

(111) surface. Based on purely energetics considerations, results obtained in this

study indicate that carbon atoms nucleate on the (100) surface more readily than

on the (lll) plane. In comparing these results with experimental findings, however,



extreme careshould be exercized. Calculations carried out here employing model

functions reflect energeticsof the nucleation processfor systems containing only

carbon atoms. No considerationwasgiven in this investigation to the entropic or

kinetic aspects.
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Table 1. Calculated binding energiesfor carbon atoms deposited on (100) and
(111) planesof diamond.

Surface Number Tersoff Brenner
Plane of Eb Eb

Adatoms (eV) (eV)

1 -7.4715 -7.8397

(100) 2 -7.5162 -7.8413
3 -7.6803 -7.9653

1 -3.5956 -3.5210

(111) 2 -4.8372 -5.4031
3 -5.7485 -5.9351



Figure 1. A top view for the (100) surface plane of chamond. Atomic sites in the

top four layers (parallel to the exposed surface) are shown. Open large and open

small circles represent atomic sites in the first and second layers_ respectively. Solid

large and solid small circles axe atomic sites in the third and fourth layers.
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Figure 2. A top view for the (111) surface plane of diamond. Atomic sites in the

top four layers (parallel to the exposed surface) are shown. Open large and open

small circles represent atomic sites in the first and second layers, respectively. Solid

large and solid small circles are atomic sites in the third mud fourth layers. In this

case, atoms located in the second and third layers are superimposed.

0 0 0

@ @c @

0 O_ 0
• • D •

@ @ @

O O_ 0
• @ •

@ @ @

0 0 0

- 10



Appendix 2. (2x1) Reconstructed Patterns of Diamond (100) Surface

Simulation calculations were performed to investigate (2 × 1) reconstructed pat-

terns for the (100) surface of diamond. Model potential functions developed recently

for carbon species were used throughout this study. For a better analysis, two dif-

ferent model functions, based on two and three-body interactions, were considered

here. The first potential is the Tersoff function [1]. It has been shown that this

function is able to reproduce correctly various bulk properties of diamond and of

the graphitic plane. The second potential used in this study is the Brenner function

[2] which is analytically similar to the Tersoff function, but parametrized differently.

This function also, has been shown to produce acceptable results for properties of

bulk diamond and the basal plane of graphite, as well as for some properties of small

carbon clusters [2,7]. While the Tersoff function reproduces correctly the lattice con-

stant of diamond, the Brenner potential at its minimum energy configuration gives

a lattice constant value about 3% shorter.

Relaxed and unrelaxed surface energies for low index planes of diamond for

unreconstructed (1×1) patterns have recently been calculated using Tersoff and

Brenner functions [8]. Unrelaxed surfaces created as abrupt terminations of the

bulk have been found to undergo a multilayer relaxation process upon equilibra-

tion. While a freshly created diamond (100) surface exhibits no LEED patterns,

after heating to about 500 K in high vacuum it displays (1×1) patterns [3]. This

surface, however, exhibits (2×1) patterns upon further heating to above 1300 K.

Experimental evidence indicates that in this restructuring process the role of hy-

drogen is significant. At the present time, it is generally believed that at high T,

most of H is desorbed from the surface region, and the observed (2×1) LEED pat-

terns are due to the formation of dimer pairs by analogy with the Si and Ge (100)

surfaces. There are several theoretical calculations supporting the dimer formation

model for the clean (100) surface of diamond. Recently, Mehandru and Anderson
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[4] calculated the energy changeassociatedwith the dimerization process based

on a six-layer-thick slab model. In their calculations they employed a tight bind-

ing method (ASED-band) and demostrated that dimer formation is energetically

favorable. Similarly, Bechstedt and Reichardt [5] using an energy minimization

procedure based on a self-consistent tight-binding method, have concluded that a

(2×1) reconstructed (100) surface of diamond is energetically more stable than the

unreconstructed (1×1) structure. Furthermore, considering a C9H12 cluster (as a

representative of the (100) surface) Verwoerd [6] has employed a MNDO procedure

to calculate the minimum energy configuration of the top layer. His results also

indicate that the dimer formation process is energetically favorable.

In this investigation to determine relaxation energies as well as other struc-

tural properties for differently restructured (2×1) patterns of the (100) surface of

diamond, we carried out energy minimization calculations using both Tersoff and

Brenner functions. A typical computational cell consisted of a 16-layer slab contain-

ing about 256 atoms. Periodic boundary conditions were imposed on the system

in two directions (i.e., x and y) and the third direction, z, was left free to pro-

vide exposed surfaces. Computational cell sizes in these calculations were chosen

to satisfy minimum energy conditions for corresponding potential functions [1,2].

The relaxation energy, AE, was calculated as the difference in energies between a

completly equilibrated system with a (2×1) structured surface and a system with

an unrelaxed (1× 1) face. Accordingly, the value of At_ reflects the gain in stability

as a result of restructuring and relaxation.

The (100) surface of diamond with different (2 × 1) reconstruction patterns was

taken into consideration. In addition to the (2×1) dimerized pattern, two different

types of missing row models were also included in the calculations. In the first

missing row (MR) structure, the top layer atoms located in every other row were

removed from the system. A top view of the (MR) structure is shown in Figure 2,
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while Figure 1 depicts the unreconstructed (1 xl) surface. The (MR) structure was

obtained by removing alternating row atoms from an ideal (100) surface. (This sur-

face structure is not identical with the structure obtained by removing alternating

column atoms.) In this study, only the missing row model as shown in Figure 2 was

investigated. In the second missing row model, those atoms removed to generate the

(MR) structure, were placed on bridge sites along the rows formed by the remaining

top layer atoms. Those displaced atoms now form a new layer which will be called

the 0'th layer. This model will be referred to as (MR+l) and its top view is depicted

in Figure 3. A schematic top view of the (2×1) restructured dimer model is shown

in Figure 4. This picture depicts dimers formed between the atoms within the same

row. The other (2xl) dimer model which may be formed by pairing the column

atoms, was found to be energetically less favorable. Therefore, in this investigation

only the row-dimer model, as shown in Figure 4, was taken into consideration.

For the (2 x 1) dimer model, calculated relaxation energies along with the struc-

tural parameters are compared in Table 1 with other available data from the lit-

erature. While the gain in energy during the relaxation process calculated by the

Tersoff function is smaller than the values of Mehandru and Anderson [4] and of

Verwoerd [6], it is consistent with the value reported by Bechstedt and Reichardt [5].

On the other hand, the Brenner function produced a more negative AE value which

shows, in a way, a better general agreement with reported values. The distance

between two carbon atoms in a dimer, rai,_e., calculated using the Tersoff function

is in very good agreement with the value reported by Bechstedt and Reichardt [5].

On the other hand, the value of r,um,,- obtained by the Brenner function is consis-

tent with the reported value of Verwoerd [6]. Relatively speaking, both functions

produced dimer distances in fair agreement with the hterature values listed in Table

1. In addition, both the Tersoff and Brenner functions predict symmetric dimers

that agree with findings of Verwoerd [6] as well as with results of Mehandru and

Anderson [4].
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Multilayer relaxation featuresfor the (2×1) dimerized (100) surfacecalculated

by the Tersoff and Brenner functions are qualitatively consistent with eachother.

SimilarOB to the (1×1) unstructured case reported earlier [8] for the dimerized

(2×1) casealso, interlayer spacingsin the surfaceregion exhibit alternating con-

tractions and expansionswith decreasingmagnitudesasdeparting from the exposed

surface. In this respect, resultsobtained hereusing the Tersoff aswell asthe Bren-

ner functions are in generalagreementwith valuesof Mehandru and Anderson [4].

SeeTable 1. The changedue to the relaxation in the interlayer spacingbetween

the i and j planes is denoted by Ahij and the corresponding percentage change

with respect to the unrelaxed system is 6_j. The largest relaxation takes place in

the first interlayer spacing which is the separation between the first and second

surface planes parallel to the exposed surface. The value of Ah12 obtained using

the Tersoff function lies between the values reported by Mehandru and Anderson

[4] and Verwoerd [6]. The Brenner function, on the other hand, produces a slightly

larger value for Ah12, but it is still in good agreement with the value of Verwoerd

[6]. (See Table 1). Calculated values for Ah:3 and Ah34 are very small. The Tersoff

function predicts almost no relaxation for interlayer spacings between the third and

fourth layers. When compared with reported values of Mehandru and Anderson [4],

the Tersoff function, in general, predicts sligthly smaller values, while the Brenner

function produces somewhat larger relaxation for the interlayer spacings.

Calculated results obtained by the Tersoff and Brenner functions for the missing

row models, (MR) and (MR+l), are presented in Table 2. Tabulated values for AE

indicate that for these missing row models the Brenner function provides more

relaxations than the Tersoff potential. The same trend is also true for the dimer

model. When those values are compared with relaxation energies given in Table

1, the energetically least stable (2 x 1) restructured surface (for both functions) was

found to be the (MR) model. The Brenner function predicts the dimer model

to be the most favorable structure (among those three models considered in this

investigation). It is about 0.18 eV per surface atom more stable than the (MR+l)
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model. The Tersoff potential, on the other hand, predicts the (MR+l) structure to

be the energetically most stable one. It was found to be 0.325 eV per surface atom

more stable than the dimer model. Upon equilibration these missing row models

also exhibit strong multilayer relaxation features. (See Table 2). For the (MR+I)

model the relaxation patterns are qualitatively similar to the dimer model case

with alternating contractions and expansions. For the (MR) model, however, the

multilayer relaxation features are somewhat different. In this case, both first and

second interlayer spacings shrink during the relaxation while the third interlayer

spacing displays a relatively small amount of expansion. In addition to changes in

interlayer spacings, relaxation in the case of these missing row models, also produces

small lateral motions for some atoms. Those atoms located in the second layer

were found to be displaced (with respect to their lattice positions) in a direction

perpedicularly away from the missing row location. See Figures 2 and 3. For the

(MR) case displacements were calculated as 0.07 and 0.11 4 corresponding to the

Tersoff and the Brenner functions; and for the (MR+l) case displacements were

0.16 and 0.237 It, respectively.

For the (100) surface of diamond both potential functions employed in this

study predict that a (2×1) restructured dimer model is energetically more sta-

ble than the (1×1) unrestructured surface. This result is consistent with earlier

calculations found in the literature [4-6]. Among three different (2×1) patterns

considered here, the Brenner function gives the dimer model as the energetically

most favorable structure. The Tersoff function, on the other hand, predicts the

(MS+l) model to be the most stable configuration. So far, the dimer model has

been proposed for the (2×1) reconstructed (100) surface of diamond by analogy

with the Si(100) and Ge(100) surfaces. This model is very convincing and at the

same time, it is well supported by theoretical calculations showing dimerization

as an energetically favorable process. At the present time, however, there is not

enough evidence indicating that the dimer model is the most favorable surface con-

figuration leading to a (2×1) pattern. For that reason, perhaps, the choice of a
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dimer model to explain the (2xl) LEED patterns may still need further substanti-

ation. Despite many similarities, carbon in terms of structure, behaves somewhat

differently than Si and Ge. For the bulk structure, for instance, the diamond phase

is not the energetically most favorable one. More importantly, the (2xl) restruc-

tured (100) surface of diamond does not exhibit the higher order reconstruction

patterns which have been observered for Si and Ge cases [3,9]. In order to fully

resolve this issue, in addition to new experiments, more accurate ab initio calcula-

tions, perhaps for a number of different (2xl) patterns, are needed. Presently, we

believe that the question "are there other (2 x 1) surface configurations with energies

lower than the dimer model" remains unanswered for the (100) surface of diamond.

Results obtained in this investigation support the stability of the dimer model

over the (lxl) unreconstructed (100) surface of diamond. In fact, calculations

indicate that all three (2x 1) patterns which were considered in this work are ener-

getically more stable than the unreconstructed (lxl) face. In general, calculated

energies and structural properties for the dimer model were found to be in agreement

with values reported in the literature. While the Brenner function, in accordance

with general belief, predicts the dimer model to be the energetically most stable

structure, the Tersoff function produced one of the missing row models, (MR+l), as

the energetically most favorable form. This last result, however, should be weighed

with caution. It may be an indication of a flaw in the potential function or we need

to reconsider the assumption that the dimer model is the lowest energy configuration

for the (2x 1) restructured surface.
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Table 1. Structure and energy values for the (2×1) dimerized (100) surface of

diamond (calculated by Tersoff and Brenner functions) compared with values from

the literature. Relaxation energies, AE, are in eV per surface atom. The distance

between two carbon atoms in a dimer is denoted by ralmc,-. The change in the inter-

layer spacing between i and j layers is denoted by Ahlj and 61j is the correponding

per cent change with respect to the unrelaxed structure. All distances are in/_.

Tersoff Brenner [4] [5] [6]

AE -0.495 -1.134 -1.84 -0.41

(-1.26)*

rdlmer 1.542 1.453 1.58 1.54

(1.40)"

Ah12 -0.196 -0.266 -0.12

(-0.14)*

612 (%) -22.0 -30.6 -16.9

(--21.4)*

Ah23 0.012 0.124 0.03

(0.05)"

623 (%) 1.34 14.2 6.7

(9.0)*

Ah34 0. -0.01 -0.03

(-0.03)"

6_4 (%) 0. -1.0 -3.4

(-3 4)"

-1.55

1.434

-0.24

* Spin paired results. See reference 4.
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Table 2. Structure and energy values for (2×1) "Missing Row" models for the

(100) surface of diamond calculated by Tersoff and Brenner functions. Descriptions

of (MR) and (MR+l) models are given in the text. Relaxation energies, AE, are in

eV per surface atom. The change in the interlayer spacing between i and j layers

is denoted by Ahij; and _ij is the correponding per cent change with respect to the

unrelaxed structure. The 0'th layer is for the (MR+l) case, it corresponds to the

new layer formed by the displaced first layer atoms (see the text). All distances are

in/_.

Tersoff Brenner

(MR) (MR+l) (MR) (MR+l)

AE -0.391 -0.820 -0.704 -0.955

Ahol -0.157 -0.252

(5oi (%) -17.63 -29.05

Ahl_ -0.058 0.183 -0.098 0.234

_12 (%) -6.51 20.52 -11.29 26.91

Ah_3 -0.067 -0.092 -0.145 -0.156

t_23 (%) -7.50 -10.31 -16.71 -17.90

Ah34 0.009 0.010 0.024 0.019

_34 (%) 1.04 1.22 2.75 2.23
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Figure 1. A schematictop view for the (1xl) unreconstructed(100) surfaceof diamond.
Positions of atoms located in the top three layers are shown. Large open

circles represent top layer atoms. Small open circles indicate atoms in the

second layer. Small solid circles are the third layer atoms.
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Figure 2. Top view of a (2xl) reconstructed missing row model (MR) for the (100)
surface of diamond. This structure was generated by removing carbon atoms

located in alternating rows. Positions of atoms located in the top three layers

are shown. Large open circles represent top layer atoms. Small open circles

indicate atomic positions in the second layer and small solid circles are the

third layer atoms.
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Figure 3. Top view of a (2xl) reconstructed missing row model (MR+l). In this struc-

ture, those atoms which were removed to generate the (MR) model, are in-
troduced back into the system. They are placed on bridge sites of top layer

atoms and shown by large open circles with a cross. These atoms constitute

the O'th layer as indicated in the text. Large open circles represent atoms in

the first layer. Small open circles indicate atoms in the second layer. Small

solid circles are the third layer atoms.
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Figure 4. Top view of the (2xl) restructured dimer model for the (100) surface of dia-

mond. Positions of atoms located in the top three layers are shown. Large

open circles represent top layer atoms. Small open circles indicate atoms in

the second layer. Small solid circles are the third layer atoms.
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Appendix 3. Crack Propagation and Tensile Behavior for

the Basal Plane of Graphite

The propagation of a surface crack was investigated at an atomistic level for

a basal plane of graphite employing a computer simulation technique based on a

molecular dynamics procedure. In addition to investigations of structural changes

taking place during the crack propagation, in this study, the distribution of atomic

stresses at the crack tip was also analyzed. Simulation calculations were carried out

considering a potential function which has been derived recently by Tersoff [1] to

represent energy- and structure-related properties of carbon systems. The Tersoff

function, to date, has been used quite successfully in many studies. In addition to

its ability to reproduce properties of a graphitic plane, this function can also predict

many surface and bulk properties of the diamond phase. The total potential energy

of a system of N particles in the Tersoff potential is expressed as a sum over atomic

sites of the form:

with

N

N
1

j(#i)

(2)

where, r_j denotes the internuclear distance between particles i and j, and fc(r_j)

represents the cut-off function which is given by:

1,

1 1 • Ir
fc(rij) = _ - _szn[-f(rij - D)/D],

O,

ifrij <R-D;

ifR-D<r_j < R + D;

ifr_j>R+D.

(8)

The three-body part of the interactions is introduced via the function blj, while VR

and VB represent repulsive and attractive parts, respectively. These functions were

defined by Tersoff as:

VR(T_j) = A.exp(-_lrij)
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=

= (1 +
N

= -
k(_i,j)

g(OiS_) = 1 + c_/a _ - J/[a _ + (h- co_Oij_) _]

For carbon the Tersoff parameters are given as: A = 1393.6(eV), B =

346.74(eV), _1 = 3.4879(Ji), ),_ = 2.2119(St), fl = 1.5724 × 10 -7, n = 0.72751,

c = 38049., d = 4.3484, h = -0.57058, R = 1.95(JI) and D = 0.15(_i).

Calculations were carried out considering a constant temperature molecular dynam-

ics technique based on the Verlet algorithm [2]. Throughout this study a time step

of 5. × 10 -16 sec. and a reduced temperature of 0.25 were employed. Stresses for

each atom in the system were evaluated as:

1 (

where, _raf_ denotes the atomic stress for the Cartesian components _ and fl, and

r/_f_ represents the corresponding Lagrangian strain parameter [3]. The volume and

the energy for the i'th atom are denoted by v and Ei, respectively. The model used

in this study representing the basal plane of graphite contained 840 (30 x 28) atoms

arranged in a rectangular two-dimensional array. First, a perfect lattice in a 2D

honeycomb structure was brought to a static equilbrium. This system displays an

almost elastic behavior and it resists any plastic deformation up to relatively high

strain values. A crack was generated in this 2D system by removing 9 a.toms from

the surface region. A portion of this system with the crack is shown schematically

in Figure 1. Then, a uniaxial load along the x direction was imposed on the system

(which now bears a surface crack) in a stepwise fashion by progressively increasing

the total length of the system in small increments. At any given time the actual

elongation, e, is defined as:
l - lo

e--
Io
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where, lo and l denote the lengths of the system in x direction at the initial stage

(i.e., at time t = O) and at a time t during the loading process. A periodic boundary

condition was applied also in the z direction to provide continuity. In the perpen-

dicular y direction, on the other hand, two exposed surfaces, one bearing the initial

crack, were left intact.

After the initial 1000 equilibration time steps, the system with a surface crack

was elongated with small increments (Ae = 0.005). Following each incremental elon-

gation, the system was permitted to equilibrate for 50 time steps under the molec-

ular dynamics code. In this second stage, the incremental loading and equilibration

process was repeated 30 times corresponding to a total elongation of e = 0.161.

During the final stage, no elongation was performed, but the system was simply

permitted to relax for an extented period of time to observe the approach of the

system to equilibrium. In Figure 2 a plot is presented displaying the elongation

and the variation of the total energy of the system as a function of time steps.

Except the very first few steps, the energy remains virtually constant during the

first equilibration period. In the second stage, as expected, the energy increases

progressively with the loading. Perhaps one may assume that at least in the begin-

ning part of the second stage the system behaves elastically. As the existing crack

propagates the stress is released and, as expected, the average energy of the system

decreases. Figure 3 displays the variation of the average stress during the loading

and equilibration stages. The phonon field generated in=the lattice and its approach

to equilibrium is visible in the final equilibration stage. These fluctuations in the

stress value represent thermal effects [4]. Figures 4a through 4k display configura-

tions of the system at various stages during the final relaxation period. As shown

in these schematic drawings, the surface crack starts propagating after the 2500 th

step. The solid circles in these figures represent 15 atoms with the largest stress

values. In all cases, during the propagation period the tip of the crack exhibited

itself as the high stress zone. This outcome is in general argeement with continuum

studies. The crack propagates virtually perpedicular to the load direction. In this
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study, no dislocation formation was observed in front of the crack tip. In order to

investigate the size dependence of these results, calculations were repeated using

a larger model containing 1680 (60x28) atoms. This larger system was found to

produce results basically identical to those obtained by the smaller model. The

time dependence of the propagation and the distribution of the high stress atoms

as well as the crack tip geometry were all found to be very similar.

In this case, only a very highly strained (e=0.161) system was taken into con-

sideration. Despite the fact that present caiculations correctly predict some of the

contiuum results (such as the crack tip being the high stress zone), further calcula-

tions with less strained systems are needed for a more complete analysis. Present

calculations constitute the very first part of a general study on the simulation of

crack propagation processes for covalently bonded systems. A proper represen-

tation of atomic interactions in covalently bonded systems requires consideration

of potential functions based on many-body interactions (like the Tersoff function

employed here). One of the important features of the many-body interactions is

to provide energetically stable configurations for open systems like the graphitic

basal plane. In a crack propagation process, on the other hand, the role played by

many-body forces constitutes a somewhat more complex academic problem; there-

fore, it will be addressed separately. When these present results are compared with

earlier calculations, the very short nature of the Tersoff function must be kept in

mind. Furthermore, the abihty of this function to simulate materials properties (in

particular, those based on long range interactions) must be thoroughly analyzed.

Another important point, in this respect, is related to dislocations. The absence of

dislocations in this study may come from the brittle character of the model system

considered here, or, more convincingly perhaps, it is due to the short range nature

of the potential function employed.
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Figure 1. A schematic representation for the initial configuration of the system with a

surface crack.
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Figure 2. Variations in the totalenergy and in the elongation as a function of time steps.
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Figure 3. Average stress values are shown versus time steps.
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